Syngas combustion in a 500 Wth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier

نویسندگان

  • C. R. Forero
  • P. Gayán
  • L. F. de Diego
  • A. Abad
  • F. García-Labiano
  • J. Adánez
  • Miguel Luesma
چکیده

Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherently to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC plant (500 Wth) using syngas as fuel. For comparison purposes pure H2 and CO were also used. Tests were performed at two temperatures (1073 and 1153 K), different solid circulation rates and power inputs. Full syngas combustion was reached at 1073K

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen production with CO2 capture by coupling steam reforming of methane and chemical–looping combustion (SR-CLC) — Use of an iron-based waste product as oxygen carrier burning a PSA tail gas

In this work it is analyzed the performance of an iron waste material as oxygen carrier for a chemical-looping combustion (CLC) system. CLC is a novel combustion technology with the benefit of inherent CO2 separation that can be used as a source of energy for the methane steam reforming process (SR). The tail gas from the PSA unit is used as fuel in the CLC system. The oxygen carrier behaviour ...

متن کامل

Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. Part 1. Fate of Sulfur

Chemical-Looping Combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO2 capture using fuel gas because CO2 is inherently separated in the process. As gaseous fuels it can be used natural gas, refinery gas or syngas from coal gasification, which may 2 contain different amounts of sulfur compounds, such as H2S and COS. An experimental investigation of t...

متن کامل

Reduction Kinetics of Cu-, Ni-, and Fe-based Oxygen Carriers Using Syngas (CO+H2) for Chemical-Looping Combustion

The reactivity of three Cu-, Fe-, and Ni-based oxygen carriers to be used in a chemical-looping combustion (CLC) system using syngas as fuel has been analyzed. The oxygen carriers exhibited high reactivity during reduction with fuel gases present in syngas (H2 and CO), with average values in the range 8-30 % min. No effect of the gas products (H2O, CO2) on the reduction reaction rate was detect...

متن کامل

Energy exploitation of acid gas with high H2S content by means of a chemical looping combustion system

In gas and petroleum industry, the waste gas stream from the sweetening process of a sour natural gas stream is commonly referred as acid gas. Chemical Looping Combustion (CLC) technology has the potential to exploit the combustible fraction of acid gas, H2S, to produce energy obtaining a flue gas highly concentrated on CO2 and SO2, which can be cost-effectively separated for subsequent applica...

متن کامل

Effect of gas composition in Chemical-Looping Combustion with copper based oxygen carriers: Fate of light hydrocarbons

Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. Natural or refinery gas can be used as gaseous fuels and they may contain different amounts of light hydrocarbons. This paper presents the combustion results obtained with a Cu-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013